Skip to content

a2c_ase

PyPI CI codecov License: MIT Python 3.10+

An ASE-friendly implementation of the amorphous-to-crystalline (a2c) workflow for predicting crystal emergence from amorphous precursors using machine learning interatomic potentials.

Overview

The a2c workflow predicts crystalline structures from amorphous materials through:

  • Melt-quench molecular dynamics simulations
  • Systematic subcell extraction and optimization
  • Structure validation and space group analysis

Learn more: Workflow Guide

Getting Started

References

  1. Aykol, M., Merchant, A., Batzner, S. et al. Predicting emergence of crystals from amorphous precursors with deep learning potentials. Nat Comput Sci 5, 105–111 (2025). DOI: 10.1038/s43588-024-00752-y

  2. Reference implementation: a2c-workflow