a2c_ase¶
An ASE-friendly implementation of the amorphous-to-crystalline (a2c) workflow for predicting crystal emergence from amorphous precursors using machine learning interatomic potentials.
Overview¶
The a2c workflow predicts crystalline structures from amorphous materials through:
- Melt-quench molecular dynamics simulations
- Systematic subcell extraction and optimization
- Structure validation and space group analysis
Learn more: Workflow Guide
Getting Started¶
References¶
-
Aykol, M., Merchant, A., Batzner, S. et al. Predicting emergence of crystals from amorphous precursors with deep learning potentials. Nat Comput Sci 5, 105–111 (2025). DOI: 10.1038/s43588-024-00752-y
-
Reference implementation: a2c-workflow